```
Dashboard / My courses / PROBABILITY AND ENGINEERING STATISTICS-Lecture-1201-meta / Chapter Three
```

Started on	Saturday, 12 December 2020, 3:10 PM
State	Finished
Completed on	Saturday, 12 December 2020, 4:05 PM
Time taken	54 mins 50 secs
Grade	$\mathbf{1 4 . 1 7}$ out of $25.00(\mathbf{5 7 \%})$

Question 1
Not answered
Marked out of
5.00

The joint probability density function of two random variables X and Y is given by
$f_{X, Y}(x, y)= \begin{cases}e^{-2 y} & 0 \leq x \leq 2,0 \leq y ; \\ 0, & \text { otherwise }\end{cases}$
Note: $e^{1}=2.718281828$

Find the $P(Y \leq 1.6 X)$. \square [The answer should be a number rounded to five decimal places, don't use symbols such as \%]
x
One possible correct answer is: 0.84400961832393

Your answer is incorrect.

Question 2

Incorrect
Mark 0.00 out of 5.00

The joint probability density function of two random variables X and Y is given by
$f_{X, Y}(x, y)= \begin{cases}e^{-2 y} & 0 \leq x \leq 2,0 \leq y ; \\ 0, & \text { otherwise }\end{cases}$
Note: $e^{1}=2.718281828$

Find the Var $\{0.6 X-1.4\}$. 1 [The answer should be a number rounded to five decimal places, don't use symbols such as \%]
\times

One possible correct answer is: 0.12

Your answer is incorrect.

Question 3
Correct
Mark 5.00 out of 5.00

The joint probability density function of two random variables X and Y is given by $f_{X, Y}(x, y)= \begin{cases}K(1-x)(y), & 1 \leq x \leq 3,0 \leq y \leq 2 \\ 0, & \text { otherwise }\end{cases}$

Determine the value of the constant K. | -0.25 |
| :---: |
| [The answer should be a number rounded to five decimal places, don't use | symbols such as \%]

One possible correct answer is: -0.25

Your answer is conrrest

Suppose that X and Y have the following joint probability distribution:

Joint Probability Mass Function of X and Y

	$\mathrm{Y}=1$	$\mathrm{Y}=3$	$\mathrm{Y}=5$
$\mathrm{X}=1$	0.09	0.12	0.07
$\mathrm{X}=2$	0.14	0.06	0.52

Determine the mean of $\mathrm{X}\left(\mu_{X}\right) . \sqrt{1.72}$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 1.72

Determine the mean of $\mathrm{Y}\left(\mu_{Y}\right)$. 3.72 [The answer should be a number rounded to five decimal places, don't use symbols such as \%]
\checkmark
One possible correct answer is: 3.72

Determine the standard deviation of $\mathrm{X}\left(\sigma_{X}\right) .4489$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.44899888641287
Determine the standard deviation of $Y\left(\sigma_{Y}\right) . \sqrt{1.661}$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%i
\checkmark

One possible correct answer is: 1.6618062462273

Determine the covariance between X and $\mathrm{Y}\left(\mu_{X, Y}\right)$. 0.241 [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.2416
Determine the correlation coefficient between X and $\mathrm{Y}\left(\rho_{X, Y}\right) .0000$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%]
x
One possible correct answer is: 0.32379585061251

Your answer is partially correct.
You have correctly answered 5 part(s) of this question.

Correct
Mark 5.00 out of 5.00

Let X denote the number of times a certain numerical control machine will malfunction: 1,2 , or 3 times on any given day. Let Y denote the number of times a technician is called on an emergency call. Their joint probability distribution is given as

Joint Probability Mass Function of X and Y

	$\mathrm{Y}=1$	$\mathrm{Y}=3$	$\mathrm{Y}=5$
$\mathrm{X}=1$	0.06	0.07	0
$\mathrm{X}=2$	0.08	0.04	0
$\mathrm{X}=3$	0.08	0	0.67

Find the $P(X=2) . .12$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%] \checkmark

One possible correct answer is: 0.12

Find the $P(X=2 / Y=3) .3636$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.36363636363636
Find the $F_{X, Y}(2,3) . \sqrt{25} \quad$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.25

Your answer is correct.
\leftarrow Short exam-chapter 2-makeup December 14

```
Jump to...
```

Short Exam - Chapter 3-makeup
December $14 \rightarrow$

```
Dashboard / My courses / PROBABILITY AND ENGINEERING STATISTICS-Lecture-1201-meta / Chapter Three
```

 / Short Exam - Chapter Three December 12
    ```
            Started on Saturday, 12 December 2020, 3:12 PM
            State Finished
        Completed on Saturday, 12 December 2020, 4:05 PM
            Time taken 52 mins 21 secs
            Grade 15.00 out of 25.00 (60%)
Question 1
Partially correct
Mark 2.50 out of
5.00
    The joint probability density function of two random variables }\textrm{X}\mathrm{ and }\textrm{Y}\mathrm{ is given by
    f}\mp@subsup{f}{X,Y}{}(x,y)={\begin{array}{ll}{16\mp@subsup{e}{}{-(4x+4y)}}&{0\leqx,0\leqy;}\\{0,}&{\mathrm{ otherwise.}}
Note: }\mp@subsup{e}{}{1}=2.71828182
Find the }P(X\geq0.6,Y\leq0.2)
0.049 [The answer should be a number rounded to five decimal places, don't use symbols such as \%]
\(\checkmark\)
One possible correct answer is: 0.049955749311046
Find the \(P(X \leq 1.6 / Y=1.3)\). 0.035 [The answer should be a number rounded to five decimal places, don't use symbols such as \%]
\(\times\)
One possible correct answer is: 0.99833844272683
Question 2
Incorrect
Mark 0.00 out of
5.00
X and Y are independent random variables, X is a zero-mean unit variance Gaussian random variable, and Y is a uniform random variable in the interval [0.5,3.3].
Find \(E\left[X^{2} Y\right]\). 0.000 [The answer should be a number rounded to five decimal places, don't use symbols such as \%] \(x\)
One possible correct answer is: 1.9
```

Your answer is incorrect.

Question 3
Correct
Mark 5.00 out of 5.00

The joint probability density function of two random variables X and Y is given by
$f_{X, Y}(x, y)= \begin{cases}K & 0 \leq y \leq x \leq 2.4 ; \\ 0, & \text { otherwise }\end{cases}$

Find K so that $f_{X, Y}(x, y)$ is a valid joint pdf. 0.347 [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.34722222222222

Your answer is correct.

Suppose that X and Y have the following joint probability distribution:

Joint Probability Mass Function of X and Y

| | $\mathrm{Y}=1$ | $\mathrm{Y}=3$ | $\mathrm{Y}=5$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{X}=1$ | 0.11 | 0.13 | 0.06 |
| $\mathrm{X}=2$ | 0.15 | 0.06 | 0.49 |

Determine the mean of $X\left(\mu_{X}\right) . \sqrt{1.700}$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 1.7

Determine the mean of $Y\left(\mu_{Y}\right) .3 .580$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%]
\checkmark
One possible correct answer is: 3.58

Determine the standard deviation of $\mathrm{X}\left(\sigma_{X}\right) .1 .989$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%]
\times
One possible correct answer is: 0.45825756949558
Determine the standard deviation of $Y\left(\sigma_{Y}\right) . \sqrt{9.576}$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%i
x

One possible correct answer is: 1.7039953051579

Determine the covariance between X and $\mathrm{Y}\left(\mu_{X, Y}\right)$. 0.274 [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.274
Determine the correlation coefficient between X and $\mathrm{Y}\left(\rho_{X, Y}\right) . \square$ [The answer should be a number rounded to five
decimal places, don't use symbols such as \%]
\mathbf{X}
One possible correct answer is: 0.35089123628262

One possible correct answer is: 0.35089123628262

Your answer is partially correct.
You have correctly answered 3 part(s) of this question.

Let X denote the number of times a certain numerical control machine will malfunction: 1,2 , or 3 times on any given day. Let Y denote the number of times a technician is called on an emergency call. Their joint probability distribution is given as

Joint Probability Mass Function of X and Y

| | $\mathrm{Y}=1$ | $\mathrm{Y}=3$ | $\mathrm{Y}=5$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{X}=1$ | 0.06 | 0.07 | 0 |
| $\mathrm{X}=2$ | 0.07 | 0.08 | 0.08 |
| $\mathrm{X}=3$ | 0.04 | 0 | 0.6 |

Find the $P(X=3) .0 .64$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%] \checkmark

One possible correct answer is: 0.64

Find the $P(X=3 / Y=5)$. 0.882 [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.88235294117647
Find the $F_{X, Y}(3,2) . \sqrt{0.17}$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.17

Your answer is correct.

```
Dashboard / My courses / PROBABILITY AND ENGINEERING STATISTICS-Lecture-1201-meta / Chapter Three
```

/ Short Exam - Chapter Three December 12

| Started on | Saturday, 12 December 2020, 3:10 PM |
| ---: | :--- |
| State | Finished |
| Completed on | Saturday, 12 December 2020, 4:05 PM |
| Time taken | 54 mins 42 secs |
| Grade | $\mathbf{2 3 . 3 3}$ out of $25.00(\mathbf{9 3 \%})$ |

Question 1
Correct
Mark 5.00 out of
5.00 \qquad
The joint probability density function of two random variables X and Y is given by
$f_{X, Y}(x, y)= \begin{cases}3 e^{-(3 x+1 y)} & 0 \leq x, 0 \leq y \\ 0, & \text { otherwise }\end{cases}$
Note: $e^{1}=2.718281828$

Find the $P(X \geq 1.2, Y \leq 0.5)$. 0.010 [The answer should be a number rounded to five decimal places, don't use symbols such as \%]
\checkmark
One possible correct answer is: 0.010751047045531

Find the $P(X \leq 1.6 / Y=1)$. 0.991 [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.99177025295098

Your answer is correct

Question 2
Correct
Mark 5.00 out of 5.00

The joint probability density function of two random variables X and Y is given by
$f_{X, Y}(x, y)= \begin{cases}6 e^{-(2 x+3 y)} & 0 \leq x, 0 \leq y ; \\ 0, & \text { otherwise } .\end{cases}$
Note: $e^{1}=2.718281828$

Determine the $E\left\{X Y^{2}\right\}$. 0.111 [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.11111111111111

Your answer is correct

Question 3
Correct
Mark 5.00 out of 5.00

The joint probability density function of two random variables X and Y is given by
$f_{X, Y}(x, y)= \begin{cases}K e^{-x} e^{-y} & 3 \leq y \leq x<\infty ; \\ 0, & \text { otherwise } .\end{cases}$
Note: $e^{1}=2.718281828$

Find K so that $f_{X, Y}(x, y)$ is a valid joint pdf. 806.8 [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 806.85758698547

Your answer is correct.

Suppose that X and Y have the following joint probability distribution:

Joint Probability Mass Function of X and Y

| | $\mathrm{Y}=1$ | $\mathrm{Y}=3$ | $\mathrm{Y}=5$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{X}=0$ | 0.05 | 0.1 | 0.09 |
| $\mathrm{X}=1$ | 0.09 | 0.17 | 0.09 |
| $\mathrm{X}=2$ | 0.09 | 0.06 | 0.26 |

Determine the mean of $X\left(\mu_{X}\right) . \sqrt{1.16}$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%]
\checkmark
One possible correct answer is: 1.17
Determine the mean of $Y\left(\mu_{Y}\right) \cdot \sqrt{3.42}$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 3.42

Determine the standard deviation of $\mathrm{X}\left(\sigma_{X}\right) .0 .788$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.78809897855536
Determine the standard deviation of $Y\left(\sigma_{Y}\right) . \sqrt{1.582}$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%i
\checkmark
One possible correct answer is: 1.5822768405055
Determine the covariance between X and $\mathrm{Y}\left(\mu_{X, Y}\right) .0 .222$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%]
\times
One possible correct answer is: 0.1886
Determine the correlation coefficient between X and $\mathrm{Y}\left(\rho_{X, Y}\right) \cdot 0.178$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%]
x
One possible correct answer is: 0.15124410362804

Your answer is partially correct.
You have correctly answered 4 part(s) of this question.

Correct
Mark 5.00 out of 5.00

Let X denote the number of times a certain numerical control machine will malfunction: 1,2 , or 3 times on any given day. Let Y denote the number of times a technician is called on an emergency call. Their joint probability distribution is given as

Joint Probability Mass Function of X and Y

| | $\mathrm{Y}=1$ | $\mathrm{Y}=3$ | $\mathrm{Y}=5$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{X}=1$ | 0.07 | 0.08 | 0 |
| $\mathrm{X}=2$ | 0.09 | 0.05 | 0 |
| $\mathrm{X}=3$ | 0.02 | 0.09 | 0.6 |

Find the $P(X=2) \cdot 0.14$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.14

Find the $P(X=2 / Y=3)$. 0.227 [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.22727272727273
Find the $F_{X, Y}(2,3) . \sqrt{0.29}$ [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.29

Your answer is correct.
\leftarrow Short exam-chapter 2-makeup December 14

```
Jump to..
```

 Started on Wednesday, 25 November 2020, 9:30 AM
 State Finished
 Completed on Wednesday, 25 November 2020, 9:42 AM
 Time taken 12 mins 1 sec
 Grade 10.00 out of 10.00 (100%)
    ```

Question 1
Correct
Mark 10.00 out
of 10.00

Joint Probability Mass Function of \(X\) and \(Y\)
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{Y}=1\) & \(\mathrm{Y}=3\) & \(\mathrm{Y}=5\) & \(\mathrm{Y}=6\) \\
\hline \(\mathrm{X}=1\) & 0.02 & 0.01 & 0.06 & 0.01 \\
\hline \(\mathrm{X}=2\) & 0.01 & 0.03 & 0.01 & 0.03 \\
\hline \(\mathrm{X}=3\) & 0.06 & 0.04 & 0.05 & 0.67 \\
\hline
\end{tabular}

Find the \(P(X \leq 2, Y \leq 5) .0 .14\) [The answer should be a number rounded to five decimal places, don't use symbols such as \%]
\(\checkmark\)

One possible correct answer is: 0.14
Find the \(P(X \leq 2, Y>5)\). 0.04 [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.04

Find the \(F_{X, Y}(3,5) .0 .29\) [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.29

Find the \(P(X=2 / Y=3) .0 .375\) [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.375

Jump to..
```

 Started on Wednesday, 25 November 2020, 9:34 AM
 State Finished
 Completed on Wednesday, 25 November 2020, 9:45 AM
 Time taken 10 mins 15 secs
 Grade 10.00 out of 10.00 (100%)
    ```

Question 1
Correct
Mark 10.00 out
of 10.00

\section*{Joint Probability Mass Function of \(X\) and \(Y\)}
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{Y}=1\) & \(\mathrm{Y}=3\) & \(\mathrm{Y}=5\) & \(\mathrm{Y}=6\) \\
\hline \(\mathrm{X}=1\) & 0 & 0.02 & 0.07 & 0.07 \\
\hline \(\mathrm{X}=2\) & 0.04 & 0.01 & 0.01 & 0.01 \\
\hline \(\mathrm{X}=3\) & 0.02 & 0 & 0.07 & 0.68 \\
\hline
\end{tabular}

Find the \(P(X \leq 2, Y \leq 5)\). 0.15 [The answer should be a number rounded to five decimal places, don't use symbols such as \%]
\(\checkmark\)

One possible correct answer is: 0.15
Find the \(P(X \leq 2, Y>5) . .08\) [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.08

Find the \(F_{X, Y}(3,5) .24 \quad\) [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.24

Find the \(P(X=2 / Y=3) .3333\) [The answer should be a number rounded to five decimal places, don't use symbols such as \%]

One possible correct answer is: 0.33333333333333```

